1	$x^{2}+9 x^{2}=25$ $10 x^{2}=25$	M1 M1	for subst for x or y attempted or $x^{2}=2.5$ o.e.; condone one error from start [allow $10 x^{2}-25=0+$ correct substn in correct formula] allow $\pm \sqrt{ } 2.5 ;$ A1 for one value ft $3 \times$ their x value(s) if irrational; condone not written as coords.	$5(\sqrt{ } 10) / 2$ or. $\pm \sqrt{ }(5 / 2)$ or $\pm 5 / \sqrt{ } 10$ oe			
$y=[\pm] 3 \sqrt{ }(5 / 2)$ o.e. eg $y=[\pm] \sqrt{ } 22.5$					\quad	A2	B1
:---	:---						

3	ii	$\begin{aligned} & (0,0), \sqrt{45} \text { isw or } 3 \sqrt{5} \\ & x=3-y \text { or } y=3-x \text { seen or } \\ & \text { used } \\ & \text { subst in eqn of circle to } \\ & \text { eliminate variable } \\ & 9-6 y+y^{2}+y^{2}=45 \\ & 2 y^{2}-6 y-36=0 \text { or } y^{2}-3 y-18 \\ & =0 \\ & (y-6)(y+3)=0 \\ & y=6 \text { or }-3 \\ & x=-3 \text { or } 6 \\ & \sqrt{(6--3)^{2}+(3--6)^{2}} \end{aligned}$	$1+1$ M1 M1 M1 M1 M1 A1 A1 M1	for correct expn of $(3-y)^{2}$ seen oe condone one error if quadratic or quad. formula attempted [complete sq attempt earns last 2 Ms] or A1 for $(6,-3)$ and A1 for $(-3,6)$ no ft from wrong points (A.G.)	2

4 (i)	$\begin{aligned} & \operatorname{grad} \mathrm{AB}=\frac{1-3}{5-(-1)}[=-1 / 3] \\ & y-3=\text { their } \operatorname{grad}(x-(-1)) \text { or } \\ & y-1=\text { their } \operatorname{grad}(x-5) \end{aligned}$ $y=-1 / 3 x+8 / 3 \text { or } 3 y=-x+8 \text { o.e }$ isw	M1 M1 A1	or use of $y=$ their gradient $x+c$ with coords of A or B or M2 for $\frac{y-3}{1-3}=\frac{x-(-1)}{5-(-1)}$ o.e. o.e. eg $x+3 y-8=0$ or $6 y=16-$ $2 x$ allow B3 for correct eqn www
4 (ii)	when $y=0, x=8$; when $x=0$, $y=8 / 3$ or ft their (i) [Area $=$] $1 / 2 \times 8 / 3 \times 8$ o.e. cao isw	M1 M1	allow $y=8 / 3$ used without explanation if already seen in eqn in (i) NB answer 32/3 given; allow $4 \times 8 / 3$ if first M1 earned; or M1 for $\int_{0}^{8}\left[\frac{1}{3}(8-x)\right] \mathrm{d} x=\left[\frac{1}{3}\left(8 x-\frac{1}{2} x^{2}\right)\right]_{0}^{8}$ and M1 dep for $\frac{1}{3}(64-32[-0])$

4 (iii)	grad perp $=-1 /$ grad $A B$ stated, or used after their grad $A B$ stated in this part midpoint $[$ of AB$]=(2,2)$ $y-2=$ their grad perp $(x-2)$ or ft their midpoint alt method working back from ans: grad perp $=-1 /$ grad $A B$ and showing/stating same as given line finding intn of their $y=-1 / 3 x-8 / 3$ and $y=3 x-4$ is $(2,2)$ showing midpt of AB is $(2,2)$	M1 M1 M1 or M1 M1 M1	or showing $3 \times-1 / 3=-1$ if (i) is wrong, allow the first M1 here ft , provided the answer is correct ft must state 'midpoint' or show working for M3 this must be correct, starting from grad $\mathrm{AB}=-1 / 3$, and also needs correct completion to given ans $y=3 x-4$ mark one method or the other, to benefit of candidate, not a mixture eg stating $-1 / 3 \times 3=-1$ or showing that $(2,2)$ is on $y=3 x-$ 4 , having found $(2,2)$ first [for both methods: for M3 must be fully correct]

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \& completion to given answer $3 y+5 x=10$, showing at least one interim step \& M1

[6] \& \begin{tabular}{l}
condone a slight slip if they recover quickly and general steps are correct (eg sometimes a slip in working with the c in $y=\frac{-5}{3} x+c$ - condone $3 y=-5 x+c$ followed by substitution and consistent working) \\
M0 if clearly 'fudging'

 \&

NB answer given; mark process not answer; annotate if full marks not earned eg with a tick for each mark earned \\
scores such as B2M0M0M1M1 are possible \\
after B2, allow full marks for complete method of showing given line has gradient perp to $A B(\operatorname{grad} A B$ must be found independently at some stage) and passes through midpt of $A B$
\end{tabular} \\

\hline 5 \& (ii) \& \& | $3 y+5(4 y-21)=10$ |
| :--- |
| $(-1,5)$ or $y=5, x=-1$ isw | \& | M1 |
| :--- |
| A2 |
| [3] | \& | or other valid strategy for eliminating one variable attempted eg $\frac{-5}{3} x+{ }_{3}^{10}=\frac{x}{4}+{ }_{4}^{21}$; condone one error |
| :--- |
| A1 for each value; if AO allow SC 1 for both values correct but unsimplified fractions, eg $\left(\frac{-23}{23}, \frac{115}{23}\right)$ | \& | or eg $20 y=5 x+105$ and subtraction of two eqns attempted |
| :--- |
| no ft from wrong perp bisector eqn, since given |
| allow M1 for candidates who reach $y=115 / 23$ and then make a worse attempt, thinking they have gone wrong |
| NB M0A0 in this part for finding E using info from (iii) that implies E is midpt of CD | \\

\hline
\end{tabular}

				showing that both C and D are on circle and commenting that E is on CD is enough for last M1M1; similarly showing $\mathrm{CD} \mathrm{D}^{2}=68$ and both C and D are on circle oe earns last M1M1	other methods exist, eg: may find eqn of circle with centre E and through C or D and then show that A and B and other of C/D are on this circle - the marks are then earned in a diferent order; award M1 for first fact shown and then final M1 for completing the argument;
if part-marks earned, annotate with a					
tick for each mark earned beside where					
earned					

6	(i) $\operatorname{rad} \mathrm{AB}=\frac{0-6}{1-(-1)}$ oe $[=-3]$ isw $\operatorname{grad} B C=\frac{0-4}{1-13}$ oe $[=1 / 3]$ isw product of grads $=-1$ [so lines perp] stated or shown numerically	M1 M1 M1	for full marks, it should be clear that grads are independently obtained or 'one grad is neg. reciprocal of other' or M1 for length of one side (or square of it) M1 for length of other two sides (or their squares) found independently M1 for showing or stating that Pythag holds [so triangle rt angled]	eg grads of -3 and $1 / 3$ without earlier working earn M1M0 for M3, must be fully correct, with gradients evaluated at least to $-6 / 2$ and $-4 /-12$ stage $\begin{aligned} & \mathrm{AB}^{2}=6^{2}+2^{2}=40, \mathrm{BC}^{2}=4^{2}+12^{2}=160, \mathrm{AC}^{2}=14^{2} \\ & +\quad 2=200 \end{aligned}$
6	(ii) $\mathrm{A} \quad \sqrt{ } 40$ or $\mathrm{BC}=\sqrt{ } 160$ $1 / 2 \times \sqrt{ } 40 \times \sqrt{ } 160$ oe or ft their AB, BC 40	M1 M1 A1	or M1 for one of area under AC (=70), under $\mathrm{AB}(=6)$ under $\mathrm{BC}(=24)$ (accept unsimplified) and M1 for their trap. two triangles	allow M1 for $\sqrt{(1-(-1))^{2}+(6-0)^{2}}$ or for $\sqrt{(13-1)^{2}+(4-0)^{2}}$ or for rectangle - 3 triangles method, $\begin{aligned} & {\left[6 \times 14-\frac{1}{2}(2)(6)-\frac{1}{2}(4)(12)-\frac{1}{2}(2)(14)\right.} \\ & =84-6-24-14] \end{aligned}$ M1 for two of the 4 areas correct and M1 for the subtraction

6	(iii) le subtended by diameter = 90° soi mid point M of $\mathrm{AC}=(6,5)$ rad of circle $=\frac{1}{2} \sqrt{14^{2}+2^{2}}[=] \frac{1}{2} \sqrt{200}$ oe or equiv using r^{2} $(x-a)^{2}+(y-b)^{2}=r^{2} \text { seen or }$ $(x-\text { their } 6)^{2}+(y-\text { their } 5)^{2}=k$ used, with $k>0$ $(x-6)^{2}+(y-5)^{2}=50 \text { cao }$	B1	or angle at centre $=$ twice angle at circumf $=2 \times 90=180$ soi or showing $\mathrm{BM}=\mathrm{AM}$ or CM , where M is midpt of AC ; or showing that $\mathrm{BM}=$ $1 / 2 \mathrm{AC}$ allow if seen in circle equation ; M1 for correct working seen for both coords accept unsimplified; or eg $r^{2}=7^{2}+1^{2}$ or $5^{2}+5^{2}$; may be implied by correct equation for circle or by correct method for AM, BM or CM ft their M or $x^{2}+y^{2}-12 x-10 y+11=0$	condone ' AB and BC are perpendicular' or ' ABC is right angled triangle’ provided no spurious extra reasoning allow $\mathbf{M 1}$ bod intent for $\mathrm{AC}=\sqrt{200}$ followed by $r=$ $\sqrt{100}$ must be simplified (no surds)
6	(iv) $(11,10)$	1		

