1	$x^2 + 9x^2 = 25$	M1	for subst for x or y attempted	
	$10x^2 = 25$	M1	or $x^2 = 2.5$ o.e.; condone one error from	
			start [allow $10x^2 - 25 = 0 + correct$	
			substn in correct formula]	
	$x = \pm (\sqrt{10})/2 \text{ or.} \pm \sqrt{(5/2)} \text{ or } \pm 5/\sqrt{10} \text{ oe}$	A2	allow $\pm\sqrt{2.5}$; A1 for one value	
	$v = [\pm] 3\sqrt{(5/2)}$ o.e. eq $v = [\pm] \sqrt{22.5}$	B1	ft 3 \times their x value(s) if irrational;	
			condone not written as coords.	5

2		grad AB = $8/4$ or 2 or $y = 2x - 10$	1		
		grad BC = $1/-2$ or $-\frac{1}{2}$ or	1		
		$y = -\frac{1}{2}x + 2.5$	1		
		product of grads = -1 [so perp]	1		3
		(allow seen or used)			Ũ
	ii	midpt E of AC = (6, 4.5)	1		
		$AC^2 = (9-3)^2 + (8-1)^2$ or 85	M1		
		$r_{2}d = \frac{1}{2} \sqrt{85} \circ \circ$	Α1		
		$(x - 6)^2 + (x - 4 - 5)^2 - 95/4 - 6$	B2		
		(x-0) + (y-4.5) = 85/4 0.e.			
		$(5-6)^2 + (0-45)^2 = 1 + 81/4$	1		
		85/41			6
	iii			(-2)	
		$\overrightarrow{BE} = \overrightarrow{ED} = \begin{pmatrix} 1\\ 4.5 \end{pmatrix}$	M1	o.e. ft their centre; or f $\overrightarrow{BC} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$	
		D has coords (6 + 1, 4.5 + 4.5) ft	M1	or $(9 - 2, 8 + 1)$: condone mixtures of	
		or		voctors and coords, throughout part iii	
		(5 + 2, 0 + 9)	A1	allow B3 for (7.9)	3
		= (7, 9)			

PhysicsAndMathsTutor.com

3		$(0, 0), \sqrt{45}$ isw or $3\sqrt{5}$	1+1		2
3	ii	(0, 0), $\sqrt{45}$ isw or $3\sqrt{5}$ x = 3 - y or $y = 3 - x$ seen or used subst in eqn of circle to eliminate variable $9 - 6y + y^2 + y^2 = 45$ $2y^2 - 6y - 36 = 0$ or $y^2 - 3y - 18$ = 0 (y - 6)(y + 3) = 0	1+1 M1 M1 M1 M1 M1 A1 A1	for correct expn of $(3 - y)^2$ seen oe condone one error if quadratic or quad. formula attempted [complete sq attempt earns	2
		y = 6 or -3 x = -3 or 6	M1	last 2 Ms] or A1 for $(6, -3)$ and A1 for	8
		$\sqrt{(63)^2+(36)^2}$		(-3, 6)	
				no ft from wrong points	
				(A.G.)	

4	(i)	grad AB = $\frac{1-3}{5-(-1)}$ [= -1/3]	M1	
		y-3 = their grad $(x - (-1))$ or y-1 = their grad $(x - 5)$	M1	or use of $y =$ their gradient $x + c$ with coords of A or B
				or M2 for $\frac{y-3}{1-3} = \frac{x-(-1)}{5-(-1)}$ o.e.
		y = -1/3x + 8/3 or $3y = -x + 8$ o.e isw	A1	o.e. eg $x + 3y - 8 = 0$ or $6y = 16 - 2x$ allow B3 for correct eqn www
4	(ii)	when $y = 0$, $x = 8$; when $x = 0$, y = 8/3 or ft their (i)	M1	allow $y = 8/3$ used without explanation if already seen in eqn in (i)
		$[Area =] \frac{1}{2} \times \frac{8}{3} \times 8 \text{ o.e. cao isw}$	M1	NB answer 32/3 given; allow 4 × 8/3 if first M1 earned; or M1 for $\int_0^8 \left[\frac{1}{3} (8-x) \right] dx = \left[\frac{1}{3} \left(8x - \frac{1}{2}x^2 \right) \right]_0^8$ and M1 dep for $\frac{1}{3} \left(64 - 32[-0] \right)$

4	(iii)	grad perp = $-1/\text{grad}$ AB stated, or used after their grad AB stated in this part	M1	or showing $3 \times -1/3 = -1$ if (i) is wrong, allow the first M1 here ft, provided the answer is correct ft
		midpoint [of AB] = $(2, 2)$	M1	must state 'midpoint' or show working
		y - 2 = their grad perp ($x - 2$) or ft their midpoint	M1	for M3 this must be correct, starting from grad $AB = -1/3$, and also needs correct completion to given ans $y = 3x - 4$
		<u>alt method working back from</u> ans:	or	mark one method or the other, to benefit of candidate, not a mixture
		grad perp = $-1/\text{grad}$ AB and showing/stating same as given line	M1	eg stating $-1/3 \times 3 = -1$
		finding into of their y = -1/3x - 8/3 and $y = 3x - 4$ is (2, 2)	M1	or showing that (2, 2) is on $y = 3x - 4$, having found (2, 2) first
		showing midpt of AB is (2, 2)	M1	[for both methods: for M3 must be fully correct]

5	(i)	(1,5)	B2	allow unsimplified	if working shown, should come from
		midpt of $AB = \begin{pmatrix} -, - \\ 2, 2 \end{pmatrix}$ oe www		B1 for one coordinate correct	$\left(\frac{3+-2}{2},\frac{4+1}{2}\right)$ oe
					NB B0 for x coord. = $\frac{5}{2}$, (obtained
					from subtraction instead of addition)
		grad AB = $\frac{4-1}{2}$ oe	M1	must be obtained independently of given line;	for those who find eqn of AB first, M0
		3 - (-2)		accept 3 and 5 correctly shown eg in a sketch, followed by 3/5	for just $\frac{y-4}{1-4} = \frac{x-3}{-2-3}$ oe, but M1 for
				M1 for rise/run = $3/5$ etc	$y - 4 = \frac{1 - 4}{-2 - 3} (x - 3)$ oe
				M0 for just 3/5 with no evidence	ignore their going on to find the eqn of AB after finding grad AB
		using gradient of AB to obtain grad perp	M1	for use of $m_1m_2 = -1$ soi or ft their gradient	this second M1 available for starting
		bisector		AB	with given line = $\frac{-5}{3}$ and obtaining
				M0 for just $\frac{-5}{3}$ without AB grad found	grad. of AB from it
		$y - 2.5 = \frac{-5}{3} (x - 0.5)$ oe	M1	eg M1 for $y = \frac{-5}{3}x + c$ and subst of midpt;	no ft for gradient of AB used
				ft their gradient of perp bisector and midpt;	
				M0 for just rearranging given equation	
				No for just rearranging given equation	

		completion to given answer $3y + 5x = 10$, showing at least one interim step	M1 [6]	condone a slight slip if they recover quickly and general steps are correct (eg sometimes a slip in working with the <i>c</i> in $y = \frac{-5}{3}x + c$ - condone $3y = -5x + c$ followed by substitution and consistent working) M0 if clearly 'fudging'	NB answer given; mark process not answer; annotate if full marks not earned eg with a tick for each mark earned scores such as B2M0M0M1M1 are possible after B2, allow full marks for complete method of showing given line has gradient perp to AB (grad AB must be found independently at some stage) and passes through midpt of AB
5	(ii)	3y + 5(4y - 21) = 10 (-1, 5) or $y = 5, x = -1$ isw	M1 A2 [3]	or other valid strategy for eliminating one variable attempted eg $\frac{-5}{3}x + \frac{10}{3} = \frac{x}{4} + \frac{21}{4}$; condone one error A1 for each value; if AO allow SC1 for both values correct but unsimplified fractions, eg $\left(\frac{-23}{23}, \frac{115}{23}\right)$	or eg $20y = 5x + 105$ and subtraction of two eqns attempted no ft from wrong perp bisector eqn, since given allow M1 for candidates who reach y = 115/23 and then make a worse attempt, thinking they have gone wrong NB M0A0 in this part for finding E using info from (iii) that implies E is midpt of CD

PhysicsAndMathsTutor.com

_ __

5	(iii)	$(x-a)^{2} + (y-b)^{2} = r^{2} \text{ seen or used}$	M1	or for $(x + 1)^2 + (y - 5)^2 = k$, or ft their E, where $k > 0$	
		$1^2 + 4^2$ oe (may be unsimplified), from clear use of A or B	M1	for calculating AE or BE or their squares, or for subst coords of A or B into circle eqn to find r or r^2 , ft their E;	this M not earned for use of CE or DE or $\frac{1}{2}$ CD NB some cands finding AB ² = 34 then obtaining 17 erroneously so M0
		$(x+1)^2 + (y-5)^2 = 17$	A1	for eqn of circle centre E, through A and B; allow A1 for $r^2 = 17$ found after $(x + 1)^2 + (y - 5)^2 = r^2$ stated and second M1 clearly earned if $(x + 1)^2 + (y - 5)^2 = 17$ appears without clear evidence of using A or B, allow the first M1 then M0 SC1	SC also earned if circle comes from C or D and E, but may recover and earn the second M1 later by using A or B
		showing midpt of $CD = (-1, 5)$	M1		
		showing CE or DE = $\sqrt{17}$ oe or showing one of C and D on circle	M1	alt M1 for showing $CD^2 = 68$ oe allow to be earned earlier as an invalid attempt to find <i>r</i>	

			showing that both C and D are on circle and commenting that E is on CD is enough for last M1M1; similarly showing $CD^2 = 68$ and both C and D are on circle oe earns last M1M1	other methods exist, eg: may find eqn of circle with centre E and through C or D and then show that A and B and other of C/D are on this circle – the marks are then earned in a different order, award M1 for first foot shown
				and then final M1 for completing the argument;
				if part-marks earned, annotate with a tick for each mark earned beside where earned
		[5]		

6	(i) rad AB = $\frac{0-6}{1-(-1)}$ oe [= -3] isw grad BC = $\frac{0-4}{1-13}$ oe [= 1/3] isw	M1 M1	for full marks, it should be clear that grads are independently obtained	eg grads of –3 and 1/3 without earlier working earn M1M0
	product of grads = -1 [so lines perp] stated or shown numerically	M1	or 'one grad is neg. reciprocal of other' or M1 for length of one side (or square of it) M1 for length of other two sides (or their squares) found independently M1 for showing or stating that Pythag holds [so triangle rt angled]	for M3, must be fully correct, with gradients evaluated at least to $-6/2$ and $-4/-12$ stage $AB^2 = 6^2 + 2^2 = 40$, $BC^2 = 4^2 + 12^2 = 160$, $AC^2 = 14^2$ $+ \ ^2 = 200$
6	(ii) A $\sqrt{40}$ or BC = $\sqrt{160}$ $\frac{1}{2} \times \sqrt{40} \times \sqrt{160}$ oe or ft their AB, BC 40	M1 M1 A1	or M1 for one of area under AC (=70), under AB (=6) under BC (=24) (accept unsimplified) and M1 for their trap. – two triangles	allow M1 for $\sqrt{(1-(-1))^2 + (6-0)^2}$ or for $\sqrt{(13-1)^2 + (4-0)^2}$ or for rectangle – 3 triangles method, $[6 \times 14 - \frac{1}{2}(2)(6) - \frac{1}{2}(4)(12) - \frac{1}{2}(2)(14)$ =84 – 6 – 24 – 14] M1 for two of the 4 areas correct and M1 for the subtraction

6	(iii) le subtended by diameter =	B1	or angle at centre = twice angle at	condone 'AB and BC are perpendicular' or 'ABC is
	90° soi		$\operatorname{circumf} = 2 \times 90 = 180 \operatorname{soi}$	right angled triangle' provided no spurious extra
			or showing $BM = AM$ or CM , where M	reasoning
			is midpt of AC; or showing that BM =	
			¹ / ₂ AC	
	mid point M of AC = $(6, 5)$	B2	allow if seen in circle equation ; M1 for correct working seen for both coords	
	rad of circle = $\frac{1}{\sqrt{14^2 + 2^2}} \left[-\frac{1}{\sqrt{200}} \right]$	M1	accept unsimplified; or eg $r^2 = 7^2 + 1^2$	allow M1 hod intent for AC = $\sqrt{200}$ followed by $r =$
	$\frac{1}{2} \frac{1}{2} \sqrt{14} + 2 \left[-\frac{1}{2} \sqrt{200} \right]$		or $5^2 + 5^2$; may be implied by correct	$\sqrt{100}$
	oe or equiv using r		equation for circle or by correct method	V100
	$(r-a)^2 + (v-b)^2 - r^2$ seen or		for AM, BM or CM ft their M	
	$(x - their 6)^2 + (y - their 5)^2 = k$ used	M1		
	with $k > 0$			
	$(x-6)^2 + (y-5)^2 = 50$ cao	A1	or $x^2 + y^2 - 12x - 10y + 11 = 0$	must be simplified (no surds)
6	(iv) (11, 10)	1		